\qquad

Roll your two dice 10 times. Calculate the experimental probabilities and draw a histogram.

Sum	Probability
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

1. Compare this histogram to the theoretical histogram?

\qquad

Roll your two dice 100 times. Calculate the experimental probabilities and draw a histogram.

Sum	Probability
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

2. Compare this histogram to the theoretical histogram?
3. Compare this histogram to the one you made by rolling the dice 10 times? Which is closer to the theoretical?
4. Make a conjecture about how closely the experimental probabilities would match the theoretical if you rolled the dice 1000 times.
\qquad

Sum	Frequency (for 10 rolls)
2	
3	
4	
5	
6	
7	
8	
10	
11	
12	

Sum	Frequency (for $\mathbf{1 0 0}$ rolls)
2	
3	
4	
5	
6	
7	
8	
10	
11	
12	

